XBeam2D Analysis: Difference between revisions

From Struct4u
Jump to navigation Jump to search
(Created page with "=== Deflection calculation timber Eurocode === The deflection calculation according to the Eurocode has several parts: * '''w-on:''' Elastic deflection according with the standard elastic modulus of the timber type due to the dead load. * '''w-creep''': Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with normal elastic modulus. 2. Deflection due to combination 6.16b with elastic modulus is Emean/(1+kdef). w-creep=2-1. * '''w-k:''' Deflection du...")
 
No edit summary
Line 2: Line 2:
The deflection calculation according to the Eurocode has several parts:
The deflection calculation according to the Eurocode has several parts:


* '''w-on:''' Elastic deflection according with the standard elastic modulus of the timber type due to the dead load.
* '''w-inst :''' Elastic deflection according with the standard elastic modulus of the timber type due to the dead load.
* '''w-creep''': Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with normal elastic modulus. 2. Deflection due to combination 6.16b with elastic modulus is Emean/(1+kdef). w-creep=2-1.
* '''w-creep''': Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with normal elastic modulus. 2. Deflection due to combination 6.16b with elastic modulus is Emean/(1+kdef). w-creep=2-1.
* '''w-k:''' Deflection due to the 6.14 combination(SLS).
* '''w-k:''' Deflection due to the 6.14 combination(SLS).
* '''w-fin''': wk+wcreep
* '''w-fin''': w-k  + w-creep
* '''w-add''': wk+wcreep+won
* '''w-add''': w-k  + w-creep  -  w-inst


=== Deflection calculation concrete Eurocode ===
=== Deflection calculation concrete Eurocode ===
The f
The physic non-linear properties are used in the calculation using the M-kappa diagram. The stiffness differs per point in the beam due to reinforcement/cracked/non-cracked.


Er wordt rekening gehouden met de fysisch niet-lineaire eigenschappen van de gewapende betondoorsneden. Nog iets ingewikkelder dan bij hout omdat de EI’s hier verlopen over de lengte doordat de langwapening anders kan zijn en de doorsneden gescheurd/ongescheurd kan zijn.
The beam is separated into parts. For each part the non-linear properties are calculated based on the reinforcement and M-kappa diagram. Separate calculation are made for the ULS and SLS.


Hoe wordt de berekening gedaan?
De ligger wordt opgedeeld in staafdelen / moten. Per moot wordt bepaald welke langswapening (boven en onder) daar aanwezig is en wordt op basis van Mkappa diagrammen de stijfheden (korte duur en lange duur) bepaald. Er worden aparte krachtsverdelingen gemaakt met die verschillende EI’s  per moot. (korte duur en lange duur)  (Dus geen integratie van krommingen maar extra mechanica berekeningen met veel staven.)
Dit is een nauwkeurige berekening. Overstekken kunnen op die manier ook eenvoudig worden berekend. Je kunt dus de doorbuiging hier gunstig beïnvloeden door plaatselijke extra wapening te plaatsen.


[[File:XBeam2DCalculationDeflectionConcrete1.png|629x629px]]
[[File:XBeam2DCalculationDeflectionConcrete1.png|629x629px]]
Line 25: Line 20:




w-on is de direct optredende vervorming met korte duur EI;G;on


w-kruip is de vervorming a.g.v kruip.  
'''w-inst :''' Elastic deflection according with the standard elastic modulus of the timber type due to the dead load.(short term EI)


Deze wordt berekend in de quasi permanente combinatie. Er worden 2 krachtsverdelingen berekend. Een keer met de korte duur EI;qp;kort en een keer met lange duur EI;qp;lang. Het verschil is de toename a.g.v. kruip. w-kruip = w;qp;lang - w;qp;kort
'''w-creep''': Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with short term EI. 2. Deflection due to combination 6.16b with elastic modulus is long term EI. w-creep = w;qp;long  - w;qp;short.


w-k is de optredende vervorming in de BGT met korte duur EI;k
'''w-k:''' Deflection due to the 6.14 combination(SLS).


w-tot,k = wk + wkruip
'''w-fin''': w-k + w-creep


w-bij,k = wk + wkruip - won
'''w-add''': w-k + w-creep  -  w-inst

Revision as of 04:43, 6 September 2022

Deflection calculation timber Eurocode

The deflection calculation according to the Eurocode has several parts:

  • w-inst : Elastic deflection according with the standard elastic modulus of the timber type due to the dead load.
  • w-creep: Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with normal elastic modulus. 2. Deflection due to combination 6.16b with elastic modulus is Emean/(1+kdef). w-creep=2-1.
  • w-k: Deflection due to the 6.14 combination(SLS).
  • w-fin: w-k + w-creep
  • w-add: w-k + w-creep - w-inst

Deflection calculation concrete Eurocode

The physic non-linear properties are used in the calculation using the M-kappa diagram. The stiffness differs per point in the beam due to reinforcement/cracked/non-cracked.

The beam is separated into parts. For each part the non-linear properties are calculated based on the reinforcement and M-kappa diagram. Separate calculation are made for the ULS and SLS.


XBeam2DCalculationDeflectionConcrete1.png


XBeam2DCalculationDeflectionConcrete2.png


w-inst : Elastic deflection according with the standard elastic modulus of the timber type due to the dead load.(short term EI)

w-creep: Deflection due to creep. 1. Deflection due to load combination SLS 6.16b with short term EI. 2. Deflection due to combination 6.16b with elastic modulus is long term EI. w-creep = w;qp;long - w;qp;short.

w-k: Deflection due to the 6.14 combination(SLS).

w-fin: w-k + w-creep

w-add: w-k + w-creep - w-inst